Vol.31, No.04. 2020
Table of Contents
ISSN:1674-9928
CN:31-2050/P
ARTICLE | Environment Observation
Methane increase over the Barents and Kara seas after the autumn pycnocline breakdown: satellite observations

Vol. 30, Issue 4, pp. 382-390 (2019) • DOI
Abstract
Basic Infomations
References
Attachments
Cited By
Abstract
Seven operative thermal infrared (TIR) spectrometers launched at sun-synchronous polar orbits supply huge amounts of information about Arctic methane (CH4) year-round, day and night. TIR data are unique for estimating CH4 emissions from a warming Arctic, both terrestrial and marine. This report is based on publicly available CH4 concentrations retrieved by NOAA and NASA from spectra of TIR radiation delivered by EU IASI and US AIRS sounders. Data were filtered for high thermal contrast in the troposphere. Validation versus aircraft measurements at three US continental sites reveal a reduced, but still significant sensitivity to CH4 anomalies in the troposphere below 4 km of altitude. The focus area is the Barents and Kara seas (BKS). BKS is impacted with warm Atlantic water and mostly free of sea ice. It is a shelf area with vast deposits of oil and natural gas (~90% CH4), as well as methane hydrates and submarine permafrost. Although in summer AIRS and IASI observe no significant difference in CH4 between BKS and N. Atlantic, a strong, monthly positive CH4 spatial anomaly of up to 30 ppb occurs during late autumn–winter. One of explanations of this increase is a fall/winter pycnocline breakdown after a period of blocked mixing caused by a stable density seawater stratification in summer: enhanced mixing lets CH4 to reach the sea surface and atmosphere.
Keywords
Author Address:
1 University of Maryland Baltimore County (ret), Baltimore, MD, USA;
2 University of Southern Florida, St. Petersburg, FL, USA;
3 Bubbleology Research International, Inc., Solvang, CA, USA
AMAP. 2015. AMAP Assessment 2015: Methane as an Arctic climate forcer. Oslo, 116. http://www.amap.no/documents/doc/AMAP-Assessment- 2015-Black-carbon-and-ozone-as-Arctic-climate-forcers/1299.
Berchet A, Bousquet P, Pison I, et al. 2016. Atmospheric constraints on the methane emissions from the East Siberian Shelf. Atmos Chem Phys, 16(6): 4147-4157, doi:10.5194/acp-16-4147-2016.
Chatterjee S, Hadi A S. 1986. Influential observations, high leverage points, and outliers in linear regression: rejoinder. Statist Sci, 1(3): 415-416, doi:10.1214/ss/1177013630.
Chand S, Knies J, Baranwal S, et al. 2014. Structural and stratigraphic controls on subsurface fluid flow at the Veslemøy High, SW Barents Sea. Mar Petrol Geol, 57: 494-508, doi:10.1016/j.marpetgeo.2014.06.004.
Fisher R E, Sriskantharajah S, Lowry D, et al. 2011. Arctic methane sources: isotopic evidence for atmospheric inputs. Geophys Res Lett, 38(21): L21803, doi:10.1029/2011gl049319.
Gentz T, Damm E, von Deimling J S, et al. 2014. A water column study of methane around gas flares located at the West Spitsbergen continental margin. Cont Shelf Res, 72: 107-118, doi:10.1016/j.csr.2013.07.013.
Hoegh-Guldberg O, Bruno J F. 2010. The impact of climate change on the world’s marine ecosystems. Science, 328(5985): 1523-1528, doi:10. 1126/science.1189930.
Kara A B, Rochford P A, Hurlburt H E. 2003. Mixed layer depth variability over the global ocean. J Geophys Res, 108(C3), doi: 10.1029/2000JC000736.
Kelley C A, Jeffrey W H. 2002. Dissolved methane concentration profiles and air-sea fluxes from 41°S to 27°N. Global Biogeochem Cy, 16(3): 13-1-13-6, doi: 10.1029/2001gb001809.
Leifer I, Tratt D M, Realmuto V J, et al. 2012. Remote sensing atmospheric trace gases with infrared imaging spectroscopy. Eos Trans AGU, 93(50): 525, doi: 10.1029/2012eo500006.
Leifer I, Chen F R, McClimans T, et al. 2019. Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara seas, The Cryosphere Discuss, Response to Dr. Antonia Gambacorta. https://www.the-cryosphere-discuss.net/tc-2018-237/tc- 2018-237-AC3-supplement.pdf.
Maddy E S, Barnet C D, Gambacorta A. 2009. A computationally efficient retrieval algorithm for hyperspectral sounders incorporating A priori information. IEEE Geosci Remote S, 6(4): 802-806, doi:10.1109/lgrs. 2009.2025780.
Mau S, Römer M, Torres M E, et al. 2017. Widespread methane seepage along the continental margin off Svalbard—from Bjørnøya to Kongsfjorden. Sci Rep, 7: 42997, doi:10.1038/srep42997.
Myhre C L, Ferré B, Platt S M, et al. 2016. Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophys Res Lett, 43(9): 4624-4631, doi:10.1002/2016gl068999.
Onarheim I H, Årthun M. 2017. Toward an ice-free Barents Sea. Geophys Res Lett, 44(16): 8387-8395, doi:10.1002/2017gl074304.
Osterkamp T E. 2010. Subsea Permafrost//Steele J H, Thorpe S A, Turekian K K. Climate and oceans. London UK: Academic Press.
Platt S M, Eckhardt S, Ferré B, et al. 2018. Methane at Svalbard and over the European Arctic ocean. Atmos Chem Phys, 18(23): 17207-17224, doi:10.5194/acp-18-17207-2018.
Razavi A, Clerbaux C, Wespes C, et al. 2009. Characterization of methane retrievals from the IASI space-borne sounder. Atmos Chem Phys, 9(20): 7889-7899, doi: 10.5194/acp-9-7889-2009.
Reeburgh W S. 2007. Oceanic methane biogeochemistry. Chem Rev, 107(2): 486-513, doi:10.1021/cr050362v.
Rudels B. 1993. High latitude ocean convection//Stone D B, Runcorn S K. Flow and creep in the solar system: observations, modelling and theory. Dordrecht: Academic Publishers, 323-356.
Shakhova N, Semiletov I, Salyuk A, et al. 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 327(5970): 1246-1250, doi:10.1126/science.1182221.
Shipilov, E V, Murzin R R. 2002. Hydrocarbon deposits of western part of Russian shelf of Arctic: geology and systematic variations. Petrol Geol, 36(4): 325-347.
Shoji H, Minami H, Hachikubo A, et al. 2005. Hydrate-bearing structures in the Sea of Okhotsk. Eos Trans AGU, 86(2): 13-18, doi:10.1029/ 2005eo020001.
Solomon S, Qin D, Manning M, et al. 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, 104.
Susskind J, Barnet C D, Blaisdell J M. 2003. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Geosci Remote S, 41(2): 390-409, doi:10.1109/ tgrs.2002.808236.
Susskind J, Blaisdell J, Iredell L. 2012. Significant advances in the AIRS Science Team Version-6 retrieval algorithm//Earth Observing Systems XVII. International Society for Optics and Photonics, 8510: 85100U, doi: 10.1117/12.929953.
Weber T, Wiseman N A, Kock A. 2019. Global ocean methane emissions dominated by shallow coastal waters. Nat Commun, 10: 4584, doi: 10.1038/s41467-019-12541-7.
Wunsch C, Heimbach P, Ponte R, et al. 2009. The global general circulation of the ocean estimated by the ECCO-consortium. Oceanog, 22(2): 88-103, doi:10.5670/oceanog.2009.41.
Xiong X Z, Barnet C, Maddy E, et al. 2008. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS). J Geophys Res, 113: G00A01, doi:10.1029/2007jg000500.
Yurganov L N, Leifer I, Myhre C L, et al. 2016. Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data. Curr Probl Remote Sens Earth From Space, 13(2): 107-119, doi:10.21046/2070-7401-2016-13-2-107-119 (in Russian with English abstract).
Yurganov L, Leifer I. 2016a. Estimates of methane emission rates from some Arctic and sub-Arctic areas, based on orbital interferometer IASI data. Curr Probl Remote Sens Earth From Space, 13(3): 173-183, doi:10.21046/2070-7401-2016-13-3-173-183 (in Russian with English abstract).
Yurganov L, Leifer I. 2016b. Abnormal concentrations of atmospheric methane over the Sea of Okhotsk during 2015/2016 winter. Curr Probl Remote Sens Earth From Space, 13(3): 231-234, doi:10.21046/2070- 7401-2016-13-3-231-234 (in Russian with English abstract).
Friend Links
Related Journals
Related Links