1 Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol, 1999, 61(1): 243-282
DOI:
10.1146/annurev.physiol.61.1.243
2 Che S, Song W Z, Lin X Z. Response of heat-shock protein (HSP) genes to temperature and salinity stress in the Antarctic psychrotrophic bacterium Psychrobacter sp. G. Curr Microbiol, 2013, 67(5): 601-608
DOI:
10.1007/s00284-013-0409-3
3 Sugimoto S, Saruwatari K, Higashi C, et al. The proper ratio of GrpE to DnaK is important for protein quality control by the DnaK-DnaJGrpE chaperone system and for cell division. Microbiology, 2008, 154(7): 1876-1885
DOI:
10.1099/mic.0.2008/017376-0
4 McCarty J S, Buchberger A, Reinstein J, et al. The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol, 1995, 249(1): 126-137
DOI:
10.1006/jmbi.1995.0284
5 Russell R, Jordan R, McMacken R. Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone. Biochemistry, 1998, 37(2): 596-607
DOI:
10.1021/bi972025p
6 Szabo A, Langer T, Schröder H, et al. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci U S A, 1994, 91(22): 10345-10349
DOI:
10.1073/pnas.91.22.10345
7 Liberek K, Marszalek J, Ang D, et al. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A, 1991, 88(7): 2874-2878
DOI:
10.1073/pnas.88.7.2874
8 Siegenthaler R K, Christen P. The importance of having thermosensor control in the DnaK chaperone system. J Biol Chem, 2005, 280(15): 14395-14401
DOI:
10.1074/jbc.M413803200
9 Brehmer D, Gässler C, Rist W, et al. Influence of GrpE on DnaKsubstrate interactions. J Biol Chem, 2004, 279(27): 27957-27964
DOI:
10.1074/jbc.M403558200
13 Lipinska B, King J, Ang D, et al. Sequence analysis and transcriptional regulation of the Escherichia coli grpE gene, encoding a heat shock protein. Nucl Acids Res, 1988, 16(15): 7545-7562
DOI:
10.1093/nar/16.15.7545
15 Barthel S, Rupprecht E, Schneider D. Thermostability of two cyanobacterial GrpE thermosensors. Plant Cell Physiol, 2011, 52(10): 1776-1785
DOI:
10.1093/pcp/pcr116
17 Hartl F U, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 2002, 295(5561): 1852-1858
DOI:
10.1126/science.1068408
20 Neidhardt F C, Van Bogelen R A. Heat shock response//Neidhardt F C. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Washington, DC: American Society for Microbiology, 1987: 1334-1345
21 Thomas D N, Dieckmann G S. Antarctic Sea ice—a habitat for extremophiles. Science, 2002, 295(5555): 641-644
DOI:
10.1126/science.1063391
23 Holtmann G, Brigulla M, Steil L, et al. RsbV-independent induction of the SigB-dependent general stress regulon of Bacillus subtilis during growth at high temperature. J Bacteriol, 2004, 186(18): 6150- 6158
DOI:
10.1128/JB.186.18.6150-6158.2004
24 Grimshaw J P A, Jelesarov I, Siegenthaler R K, et al. Thermosensor action of GrpE: the DnaK chaperone system at heat shock temperatures. J Biol Chem, 2003, 278(21): 19048-19053
DOI:
10.1074/jbc.M300924200
25 Lin X Z, Cui S S, Xu G Y, et al. Cloning and heterologous expression of two cold-active lipases from the Antarctic bacterium Psychrobacter sp. G. Polar Res, 2010, 29(3): 421-429
DOI:
10.1111/j.1751-8369.2010.00189.x
26 Song W Z, Lin X Z, Huang X H. Characterization and expression analysis of three cold shock protein (CSP) genes under different stress conditions in the Antarctic bacterium Psychrobacter sp. G. Polar Biol, 2012, 35(10): 1515-1524
DOI:
10.1007/s00300-012-1191-6
27 Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408
DOI:
10.1006/meth.2001.1262
28 Yu S S, Yang H, Chai Y M, et al. Molecular cloning and characterization of a C-type lectin in roughskin sculpin (Trachidermus fasciatus). Fish Shellfish Immunol, 2013, 34(2): 582-592
DOI:
10.1016/j.fsi.2012.11.033
30 Clark M S, Fraser K P P, Peck L S. Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperones, 2008, 13(1): 39-49
DOI:
10.1007/s12192-008-0014-8
31 Park H, Ahn I Y, Lee H E. Expression of heat shock protein 70 in the thermally stressed antarctic Clam Laternula elliptica. Cell Stress Chaperones, 2007, 12(3): 275-282
DOI:
10.1379/CSC-271.1
32 Nath I V A, Bharathi P A L. Diversity in transcripts and translational pattern of stress proteins in marine extremophiles. Extremophiles, 2011, 15(2): 129-153
DOI:
10.1007/s00792-010-0348-x
33 Overpeck J, Hughen K, Hardy D, et al. Arctic environmental change of the last four centuries. Science, 1997, 278(5341): 1251-1256
DOI:
10.1126/science.278.5341.1251
34 Pearce D A. Climate change and the microbiology of the Antarctic Peninsula region. Sci Prog, 2008, 91(2): 203-217
DOI:
10.3184/003685008X332534