1 Leppäranta M. A review of analytical models of sea-ice growth. Atmos Ocean, 1993, 31(1): 123–138
2 Weeks W F, Ackley S F. The growth, structure, and properties of sea ice // Untersteiner N. The geophysics of sea ice. New York: Plenum Press, 1986
3 Zubov N N. L’dy Arktiki Moscow: Izdatelstvo Glavsevmorputi,English translation (Arctic ice)English translation (Arctic ice)1963, Washington DC: Naval Oceanographic Office, 1945 (in Russian). 1945
4 Maykut G A, Untersteiner N. Some results from a time-dependent thermodynamic model of sea ice. J Geophys Res, 1971, 76(6): 1550–1575
5 Kwok R, Cunningham G F, Wensnahan M, et al. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J Geophys Res, 2009, 114(C7): C07005
DOI:
10.1029/2009JC005312
6 Rodrigues J. The rapid decline of the sea ice in the Russian Arctic. Cold Reg Sci Technol, 2008, 54(2): 124–142
7 Eicken H, Lensu M, Leppäranta M, et al. Thickness, structure, and properties of level summer multiyear ice in the Eurasian sector of the Arctic Ocean. J Geophys Res, 1995, 100(C11): 22697–22710
8 Walker E R, Wadhams P. Thick sea-ice floes. Arctic, 1979, 32(2): 140–147
9 Reimnitz E, Eicken H, Martin T. Multiyear fast ice along the Taymyr Peninsula, Siberia. Arctic, 1995, 48(4): 359–367
10 Polyakov I V, Alekseev G V, Bekryaev R V, et al. Long-term ice variability in Arctic marginal seas. J Climate, 2003, 16(12): 2078–2085
11 Dmitrenko I A, Kirillov S A, Tremblay L B. The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: Implication for climatic change. J Geophys Res, 2008, 113(C3): C03007
DOI:
10.1029/2007JC004304
12 Sirevaag A, Fer I. Early spring oceanic heat fluxes and mixing observed from drift stations north of Svalbard. J Phys Oceanogr, 2009, 39(12): 3049–3069
13 Fer I, Skogseth R, Geyer F. Internal waves and mixing in the Marginal Ice Zone near the Yermak Plateau. J Phys Oceanogr, 2010, 40(7): 1613–1630
14 Shoutilin S V, Makshtas A P, Ikeda M, et al. Dynamic-thermodynamic sea ice model: ridging and its application to climate study and navigation. J Climate, 2005, 18(18): 3840–3855
15 Leppäranta M. A growth model for black ice, snow ice and snow thickness in subarctic basins. Nordic Hydrol, 1983, 14(2): 59–70
16 Semtner A J. A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr, 1976, 6(3): 379–389
17 Winton M. A reformulated three-layer sea ice model. J Atmos Ocean Technol, 2000, 17: 525–531
18 Launiainen J, Cheng B. Modelling of ice thermodynamics in natural water bodies. Cold Reg Sci Technol, 1998, 27(3): 153–178
19 Bitz C M, Lipscomb W H. An energy-conserving thermodynamic model of sea ice. J Geophys Res, 1999, 104(C7): 15669–15677
DOI:
10.1029/1999JC900100
20 Saloranta T M. Modeling the evolution of snow, snow ice and ice in the Baltic Sea. Tellus, 2000, 52(1): 93–108
21 Cheng B, Launiainen J, Vihma T. Modelling of superimposed ice formation and sub-surface melting in the Baltic Sea. Geophysica, 2003, 39(1-2): 31–50
22 Shirasawa K, Leppäranta M, Saloranta T, et al. The thickness of coastal fast ice in the Sea of Okhotsk. Cold Reg Sci Technol, 2005, 42(1): 25–40
23 Vancoppenolle M, Fichefet T, Goosse H, et al. Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modelling. 2009, 27(1-2): 33–53
DOI:
10.1016/j.ocemod.2008.10.005
24 Leppäranta M. The Drift of Sea Ice, 2nd edition. Heidelberg, Germany: Springer-Praxis, 2011 : 347
25 Lei R B, Li Z J, Cheng B, et al. Annual cycle of landfast sea ice in Prydz Bay, east Antarctica. J. Geophys Res, 2010, 115(C2): C02006
DOI:
10.1029/2008JC005223
26 Yang Y, Li Z, Leppäranta M, et al. Modeling the thickness of landfast sea ice in Prydz Bay, East Antarctica with a focus on summer decay. Antarctic Science, 2015, accepted for publication, 2015
27 Cheng B, Zhang Z H, Vihma T, et al. Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE 2003 data. J Geophys Res, 2008, 113(C9): C09020
DOI:
10.1029/2007JC004654
28 Gudkovich Z M, Gladkov M G, Luk’ianchikov S N. Ice cover volume and ice thickness distribution on the southeastern part of the Laptev Sea at the end of the winter 1976 (in Russian) // Treshnikov A F. Polex-North-76 (Scientific Results) Part 2. Gidrometeoizdat, Leningrad. 1979 : 16–19
29 Jaedicke C, Thiis T, Sandvik A D, et al. Drifting snow in complex terrain-comparison of measured snow distribution and simulated wind field. Proceedings of the Fourth International Conference on Snow Engineering.. Trondheim, Norway, 2000 : 65–73
30 Smith I J, Langhorne P J, Haskell T G, et al. Platelet ice and the land- fast sea ice of McMurdo Sound, Antarctica. Ann Glaciol, 2001, 33(1): 21–27
31 Shirasawa K, Leppäranta M. Measurements and modeling of the ice–ocean heat flux // Eicken H, Gradinger R, Salganek M, et al. Field techniques in sea ice research. Fairbanks, AK: University of Alaska Press. 2009
32 Eicken H, Reimnitz E, Alexandrov V, et al. Sea-ice processes in the Laptev Sea and their importance for sediment export. Cont Shelf Res, 1997, 17(2): 205–233
33 Sturm M, Holmgren J, König M, et al. The thermal conductivity of seasonal snow. J Glaciol, 1997, 43(143): 26–41
34 Grenfell T C, Maykut G A. The optical properties of ice and snow in the Arctic Basin. J Glaciol, 1977, 18: 445–463
35 Perovich D K. The Optical Properties of Sea Ice. . CRREL Report 96–1. Hanover NH: Cold Regions Research and Engineering Laboratory. 1996
36 Liston G E, Winter J G, Bruland O, et al. Below-surface ice melt on the coastal Antarctic ice sheet. J Glaciol, 1999, 45(150): 273–285
37 Cheng B. On the numerical resolution in a thermodynamic sea-ice model. J Glaciol, 2002, 48(161): 301–311
38 Semmler T, Cheng B, Yang Y, et al. Snow and ice on Bear Lake (Alaska)–sensitivity experiments with two lake ice models. Tellus A, 2012, 64: 17339
DOI:
10.3402/tellusa.v64i0.17339
39 Pringle D J, Eicken H, Trodahl H J, et al. Thermal conductivity of landfast Antarctic and Arctic sea ice. J Geophys Res, 2007, 112(C4): C04017
DOI:
10.1029/2006JC003641
40 Anderson E A. A point energy and mass balance model of a snow cover.Tech. Rep. NWS 19, Natl. Oceanic and Atmos. Admin., Washington, D. C.. 1976
41 Mueller D R, Van Hove P, Antoniades D, et al. High Arctic lakes as sentinel ecosystems: Cascading regime shifts in climate, ice cover, and mixing. Limnol Oceanogr, 2009, 54(6, part 2): 2371–2385
42 Makshtas A P, Bogorodskiy P V, Kustov V Y. Rapidmelt of landfast- ice in Sogo Bey (Tiksi Gulf) during spring 2011. Problems of Arctic and Antarctic, 2012, 1: 37–47
43 Eicken H, Grenfell T C, Perovich D K, et al. Hydraulic controls of summer Arctic pack ice albedo. J Geophys Res, 2004, 109(C8): C08007
DOI:
10.1029/2003JC001989
44 Cheng B, Mäkynen M, Similä M, et al. Modelling snow and ice thickness in the coastal Kara Sea, Russian Arctic. Ann Glaciol, 2013, 54(62): 105
45 Cheng B, Vihma T, Rontu L, et al. Evolution of snow and ice temperature, thickness and energy balance in Lake Orajärvi, northern Finland. Tellus A, 2014, 66: 21564
DOI:
10.3402/tellusa.v66.21564
46 Aleksandrov Y I, Bryazgin N N, F?rland E J, et al. Seasonal, interannual and long-term variability of precipitation and snow depth in the region of the Barents and Kara seas. Polar Res, 2005, 24(1-2): 69–85
DOI:
10.1111/j.1751-8369.2005.tb00141.x
47 Wang M Y, Overland J E, et al. A sea ice free summer Arctic within 30 years?. Geophys Res Lett, 2009, 36: L07502
DOI:
10.1029/2009GL037820